z-logo
Premium
The modeling and numerical analysis of wrinkled membranes
Author(s) -
Ding Hongli,
Yang Bingen
Publication year - 2003
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.832
Subject(s) - membrane , discretization , finite element method , smoothing , numerical analysis , parametric statistics , mathematics , relaxation (psychology) , dynamic relaxation , constraint (computer aided design) , mathematical optimization , mathematical analysis , structural engineering , engineering , geometry , chemistry , psychology , social psychology , biochemistry , statistics
In this paper three fundamental issues regarding modeling and analysis of wrinkled membranes are addressed. First, a new membrane model with viable Young's modulus and Poisson's ratio is proposed, which physically characterizes stress relaxation phenomena in membrane wrinkling, and expresses taut, wrinkled and slack states of a membrane in a systematic manner. Second, a parametric variational principle is developed for the new membrane model. Third, by the variational principle, the original membrane problem is converted to a non‐linear complementarity problem in mathematical programming. A parametric finite element discretization and a smoothing Newton method are then used for numerical solution. The proposed membrane model and numerical method are capable of delivering convergent results for membranes with a mixture of wrinkled and slack regions, without iteration of membrane stresses. Three numerical examples are provided. Copyright © 2003 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom