z-logo
Premium
Numerical techniques for the analysis of crack propagation in cohesive materials
Author(s) -
Marfia S.,
Sacco E.
Publication year - 2003
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.732
Subject(s) - materials science , fracture mechanics , cohesive zone model , numerical analysis , composite material , fracture (geology) , constitutive equation , stress (linguistics) , embedding , computer simulation , mechanics , structural engineering , finite element method , computer science , mathematics , engineering , mathematical analysis , physics , linguistics , philosophy , artificial intelligence
The aim of the paper is the development, assessment and use of suitable numerical procedures for the analysis of the crack evolution in cohesive materials. In particular, homogeneous as well as heterogeneous materials, obtained by embedding short stiff fibres in a cohesive matrix, are considered. Two‐dimensional Mode I fracture problems are investigated. The cohesive constitutive law is adopted to model the process zone occurring at the crack tip. An elasto‐plastic constitutive relationship, able to take into account the processes of fibre debonding and pull‐out, is introduced to model the mechanical response of the short fibres. Two numerical procedures, based on the stress and on the energy approach, are developed to investigate the crack propagation in cohesive as well as fibre‐reinforced materials, characterized by a periodic crack distribution. The results obtained using the stress and energy approaches are compared in order to evaluate the effectiveness of the procedures. Investigations on the size effect for microcracked periodic cohesive materials, and on the beneficial effects of the fibres in improving the composite material response, are developed. Copyright © 2003 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here