z-logo
Premium
Material modeling for parametric, anisotropic finite strain hyperelasticity based on machine learning with application in optimization of metamaterials
Author(s) -
Fernández Mauricio,
Fritzen Felix,
Weeger Oliver
Publication year - 2021
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.6869
Subject(s) - hyperelastic material , metamaterial , isotropy , parametric statistics , constitutive equation , computer science , lattice (music) , anisotropy , parametric model , deformation (meteorology) , topology (electrical circuits) , nonlinear system , artificial neural network , topology optimization , finite element method , artificial intelligence , materials science , algorithm , structural engineering , mathematics , physics , engineering , optics , acoustics , composite material , statistics , combinatorics , quantum mechanics

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom