z-logo
Premium
On a novel full decoupling, linear, second‐order accurate, and unconditionally energy stable numerical scheme for the anisotropic phase‐field dendritic crystal growth model
Author(s) -
Yang Xiaofeng
Publication year - 2021
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.6697
Subject(s) - decoupling (probability) , nonlinear system , anisotropy , mathematics , field (mathematics) , coupling (piping) , mathematical analysis , physics , quantum mechanics , mechanical engineering , pure mathematics , control engineering , engineering
The anisotropic phase‐field dendritic crystal growth model is a highly nonlinear system that couples the anisotropic Allen–Cahn equation and the thermal equation together. Due to the high anisotropy and nonlinear couplings in the system, how to develop an accurate and efficient, especially a fully decoupled scheme, has always been a challenging problem. To solve the challenge, in this article, we construct a novel fully decoupled numerical scheme which is also linear, energy stable, and second‐order time accurate. The key idea to realize the full decoupling structure is to introduce an ordinary differential equation to deal with the nonlinear coupling terms satisfying the so‐called “zero‐energy‐contribution” property. This scheme is very effective and easy to implement since only a few fully decoupled elliptic equations with constant coefficients need to be solved at each time step. We rigorously prove the solvability of each step and the unconditional energy stability, and perform a large number of numerical simulations in 2D and 3D to demonstrate its stability and accuracy numerically.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here