Premium
Base force element method based on the complementary energy principle for the damage analysis of recycled aggregate concrete
Author(s) -
Wang Yao,
Peng Yijiang,
Kamel Mahmoud M. A.,
Ying Liping
Publication year - 2019
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.6276
Subject(s) - quadrilateral , finite element method , stiffness matrix , structural engineering , lagrange multiplier , extended finite element method , mortar , displacement (psychology) , mathematics , mixed finite element method , computer science , mathematical optimization , engineering , materials science , composite material , psychology , psychotherapist
Summary The finite element method (FEM) is an effective approach for exploring the failure mechanism of heterogeneous materials. According to the complementary energy principle, the use of FEM might suffer from several difficulties in terms of keeping the elements and their boundaries balanced, as well as finding interpolation functions. In this study, we introduced an efficient approach to researching the failure mechanism of the material, named base force element method (BFEM), according to complementary energy principle. Specifically, the element compliance matrix of an arbitrary quadrilateral element with four mid‐edge nodes was expressed based on the complementary energy principle. Then, the node displacement was obtained by the governing equation using the Lagrange multiplier method. In addition, both the compliance matrix and the node displacement were represented as explicit expressions without the use of Gaussian integration. A numerical model of the recycled aggregate concrete (RAC) was established according to the Monte Carlo method. A comparative sample of the digital image model was also established using digital image technology. The influences of substituting recycled aggregate and the relative mechanical properties of adhered mortar to those of new mortar on the failure mechanism of RAC were studied. The simulation results indicated that the BFEM is an effective approach to researching the damage mechanism of heterogeneous materials.