Premium
On sequential approximate simultaneous analysis and design in classical topology optimization
Author(s) -
Munro Dirk,
Groenwold Albert A.
Publication year - 2016
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.5353
Subject(s) - hessian matrix , mathematics , mathematical optimization , diagonal , nonlinear programming , semidefinite programming , sequential quadratic programming , quadratic programming , nonlinear system , quantum mechanics , physics , geometry
Summary We study the simultaneous analysis and design (SAND) formulation of the ‘classical’ topology optimization problem subject to linear constraints on material density variables. Based on a dual method in theory, and a primal‐dual method in practice, we propose a separable and strictly convex quadratic Lagrange–Newton subproblem for use in sequential approximate optimization of the SAND‐formulated classical topology design problem. The SAND problem is characterized by a large number of nonlinear equality constraints (the equations of equilibrium) that are linearized in the approximate convex subproblems. The availability of cheap second‐order information is exploited in a Lagrange–Newton sequential quadratic programming‐like framework. In the spirit of efficient structural optimization methods, the quadratic terms are restricted to the diagonal of the Hessian matrix; the subproblems have minimal storage requirements, are easy to solve, and positive definiteness of the diagonal Hessian matrix is trivially enforced. Theoretical considerations reveal that the dual statement of the proposed subproblem for SAND minimum compliance design agrees with the ever‐popular optimality criterion method – which is a nested analysis and design formulation. This relates, in turn, to the known equivalence between rudimentary dual sequential approximate optimization algorithms based on reciprocal (and exponential) intervening variables and the optimality criterion method. Copyright © 2016 John Wiley & Sons, Ltd.