Premium
Automatic image‐based stress analysis by the scaled boundary finite element method
Author(s) -
Saputra Albert,
Talebi Hossein,
Tran Duc,
Birk Carolin,
Song Chongmin
Publication year - 2016
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.5304
Subject(s) - finite element method , stress (linguistics) , boundary knot method , boundary (topology) , image (mathematics) , computer science , mathematics , boundary element method , mathematical analysis , structural engineering , computer vision , engineering , linguistics , philosophy
Summary Digital imaging technologies such as X‐ray scans and ultrasound provide a convenient and non‐invasive way to capture high‐resolution images. The colour intensity of digital images provides information on the geometrical features and material distribution which can be utilised for stress analysis. The proposed approach employs an automatic and robust algorithm to generate quadtree (2D) or octree (3D) meshes from digital images. The use of polygonal elements (2D) or polyhedral elements (3D) constructed by the scaled boundary finite element method avoids the issue of hanging nodes (mesh incompatibility) commonly encountered by finite elements on quadtree or octree meshes. The computational effort is reduced by considering the small number of cell patterns occurring in a quadtree or an octree mesh. Examples with analytical solutions in 2D and 3D are provided to show the validity of the approach. Other examples including the analysis of 2D and 3D microstructures of concrete specimens as well as of a domain containing multiple spherical holes are presented to demonstrate the versatility and the simplicity of the proposed technique. Copyright © 2016 John Wiley & Sons, Ltd.