Premium
An interface integral equation method for solving general multi‐medium mechanics problems
Author(s) -
Gao XiaoWei,
Feng WeiZhe,
Zheng BaoJing,
Yang Kai
Publication year - 2016
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.5193
Subject(s) - integral equation , mathematics , continuum mechanics , mathematical analysis , displacement (psychology) , boundary element method , boundary value problem , classical mechanics , physics , finite element method , structural engineering , engineering , psychology , psychotherapist
Summary In this paper, based on the general stress–strain relationship, displacement and stress boundary‐domain integral equations are established for single medium with varying material properties. From the established integral equations, single interface integral equations are derived for solving general multi‐medium mechanics problems by making use of the variation feature of the material properties. The displacement and stress interface integral equations derived in this paper can be applied to solve non‐homogeneous, anisotropic, and non‐linear multi‐medium problems in a unified way. By imposing some assumptions on the derived integral equations, detailed expressions for some specific mechanics problems are deduced, and a few numerical examples are given to demonstrate the correctness and robustness of the derived displacement and stress interface integral equations. Copyright © 2015 John Wiley & Sons, Ltd.