Premium
Parallel implementation of spectral element method for Lamb wave propagation modeling
Author(s) -
Kudela Pawel
Publication year - 2015
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.5119
Subject(s) - multiplication (music) , spectral element method , gauss , element (criminal law) , matrix (chemical analysis) , computational science , sparse matrix , computer science , algorithm , computation , finite element method , mathematics , physics , gaussian , mixed finite element method , materials science , combinatorics , quantum mechanics , political science , law , composite material , thermodynamics
Summary The proposed spectral element method implementation is based on sparse matrix storage of local shape function derivatives calculated at Gauss–Lobatto–Legendre points. The algorithm utilizes two basic operations: multiplication of sparse matrix by vector and element‐by‐element vectors multiplication. Compute‐intensive operations are performed for a part of equation of motion derived at the degree of freedom level of 3D isoparametric spectral elements. The assembly is performed at the force vector in such a way that atomic operations are minimized. This is achieved by a new mesh coloring technique The proposed parallel implementation of spectral element method on GPU is applied for the first time for Lamb wave simulations. It has been found that computation on multicore GPU is up to 14 times faster than on single CPU. Copyright © 2015 John Wiley & Sons, Ltd.