z-logo
Premium
A hybrid optimization model for proficient bidding strategies with no Karush–Kuhn–Tucker optimality conditions
Author(s) -
Yadav Naresh Kumar
Publication year - 2015
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.4920
Subject(s) - karush–kuhn–tucker conditions , mathematical optimization , bidding , minification , optimization problem , maximization , computer science , mathematics , economics , microeconomics
Summary The computational complexity behind the bi‐level optimization problem has led the researchers to adopt Karush–Kuhn–Tucker (KKT) optimality conditions. However, the problem function has more number of complex constraints to be satisfied. Classical optimization algorithms are impotent to handle the function. This paper presents a simplified minimization function, in which both the profit maximization problem and the ISO market clearance problem are considered, but with no KKT optimality conditions. Subsequently, this paper solves the minimization function using a hybrid optimization algorithm. The hybrid optimization algorithm is developed by combining the operations of group search optimizer (GSO) and genetic algorithm (GA). The hybridization enables the dispersion process of GSO to be a new mutated dispersion process for improving the convergence rate. We evaluate the methodology by experimenting on IEEE 14 and IEEE 30 bus systems. The obtained results are compared with the outcomes of bidding strategies that are based on GSO, PSO, and GA. The results demonstrate that the hybrid optimization algorithm solves the minimization function better than PSO, GA, and GSO. Hence, the profit maximization in the proposed methodology is relatively better than that of the conventional algorithms. Copyright © 2015 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here