z-logo
Premium
A finite difference solution of non‐linear systems of radiative–conductive heat transfer equations
Author(s) -
Asllanaj F.,
Milandri A.,
Jeandel G.,
Roche J. R.
Publication year - 2002
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.490
Subject(s) - finite difference , heat transfer , thermal conduction , radiative transfer , finite difference method , thermal radiation , mathematics , mathematical analysis , differential equation , partial differential equation , mechanics , physics , thermodynamics , optics
A finite difference solution for a system of non‐linear integro–differential equations modelling the steady‐state combined radiative–conductive heat transfer is proposed. A new backward–forward finite difference scheme is formulated for the Radiative Transfer Equation. The non‐linear heat conduction equation is solved using the Kirchhoff transformation associated with a centred finite difference scheme. The coupled system of equations is solved using a fixed‐point method, which relates to the temperature field. An application on a real insulator composed of silica fibres is illustrated. The results show that the method is very efficient. Copyright © 2002 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom