Premium
A locking‐free selective smoothed finite element method using tetrahedral and triangular elements with adaptive mesh rezoning for large deformation problems
Author(s) -
Onishi Y.,
Amaya K.
Publication year - 2014
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.4684
Subject(s) - finite element method , polygon mesh , smoothing , smoothed finite element method , tetrahedron , node (physics) , computer science , mesh generation , deformation (meteorology) , adaptive mesh refinement , mathematics , constitutive equation , algorithm , structural engineering , geometry , computational science , engineering , boundary knot method , materials science , boundary element method , composite material , computer vision
SUMMARY A novel finite element (FE) formulation with adaptive mesh rezoning for large deformation problems is proposed. The proposed method takes the advantage of the selective smoothed FE method (S‐FEM), which has been recently developed as a locking‐free FE formulation with strain smoothing technique. We adopt the selective face‐based smoothed/node‐based smoothed FEM (FS/NS‐FEM‐T4) and edge‐based smoothed/node‐based smoothed FEM (ES/NS‐FEM‐T3) basically but modify them partly so that our method can handle any kind of material constitutive models other than elastic models. We also present an adaptive mesh rezoning method specialized for our S‐FEM formulation with material constitutive models in total form. Because of the modification of the selective S‐FEMs and specialization of adaptive mesh rezoning, our method is locking‐free for severely large deformation problems even with the use of tetrahedral and triangular meshes. The formulation details for static implicit analysis and several examples of analysis of the proposed method are presented in this paper to demonstrate its efficiency. Copyright © 2014 John Wiley & Sons, Ltd.