z-logo
Premium
A Gibbs‐energy‐barrier‐based computational micro‐sphere model for the simulation of martensitic phase‐transformations
Author(s) -
Ostwald Richard,
Bartel Thorsten,
Menzel Andreas
Publication year - 2014
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.4601
Subject(s) - helmholtz free energy , statistical physics , scalar (mathematics) , finite element method , phase (matter) , boundary value problem , mechanics , mathematics , physics , mathematical analysis , thermodynamics , geometry , quantum mechanics
SUMMARY We introduce a material model for the simulation of polycrystalline materials undergoing solid‐to‐solid phase‐transformations. As a basis, we present a scalar‐valued phase‐transformation model where a Helmholtz free energy function depending on volumetric and deviatoric strain measures is assigned to each phase. The analysis of the related overall Gibbs energy density allows for the calculation of energy barriers. With these quantities at hand, we use a statistical‐physics‐based approach to determine the resulting evolution of volume fractions. Though the model facilitates to take into account an arbitrary number of solid phases of the underlying material, we restrict this work to the simulation of phase‐transformations between an austenitic parent phase and a martensitic tension and compression phase. The scalar model is embedded into a computational micro‐sphere formulation in view of the simulation of three‐dimensional boundary value problems. The final modelling approach necessary for macroscopic simulations is accomplished by a finite element formulation, where the local material behaviour at each integration point is governed by the response of the micro‐sphere model.Copyright © 2014 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here