Premium
Error estimation for crack simulations using the XFEM
Author(s) -
Prange C.,
Loehnert S.,
Wriggers P.
Publication year - 2012
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.4331
Subject(s) - classification of discontinuities , discretization , extended finite element method , estimator , discretization error , finite element method , mathematics , fracture mechanics , norm (philosophy) , algorithm , mathematical analysis , structural engineering , engineering , statistics , political science , law
SUMMARY The extended finite element method (XFEM) is by now well‐established for crack calculations in linear elastic fracture mechanics. An advantage of this method is its discretization independence for crack simulations. Nevertheless, discretization errors occur when using the XFEM. In this paper, a simple recovery based error estimator for the discretization error in XFEM‐calculations for cracks is presented. The method is based on the Zienkiewicz and Zhu error estimator. Enhanced smoothed stresses incorporating the discontinuities and singularities because of the cracks are recovered to enable the error estimation for arbitrary distributed cracks. This approach also allows the consideration of materials with generally inelastic behaviour. The enhanced stresses are computed by means of a least square fit problem. To assess the quality of the error estimator, global norms and the effectivity index for the global energy norm for examples with known analytical solutions are presented. Copyright © 2012 John Wiley & Sons, Ltd.