Premium
A micro‐mechanical damage model based on gradient plasticity: algorithms and applications
Author(s) -
Chen Jian,
Yuan Huang
Publication year - 2002
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.431
Subject(s) - quadrilateral , finite element method , plasticity , constitutive equation , softening , computation , function (biology) , deformation (meteorology) , material failure theory , process (computing) , structural engineering , materials science , algorithm , computer science , mathematics , composite material , engineering , evolutionary biology , biology , operating system
As soon as material failure dominates a deformation process, the material increasingly displays strain softening and the finite element computation is significantly affected by the element size. Without remedying this effect in the constitutive model one cannot hope for a reliable prediction of the ductile material failure process. In the present paper, a micro‐mechanical damage model coupled to gradient‐dependent plasticity theory is presented and its finite element algorithm is discussed. By incorporating the Laplacian of plastic strain into the damage constitutive relationship, the known mesh‐dependence is overcome and computational results are uniquely correlated with the given material parameters. The implicit C 1 shape function is used and can be transformed to arbitrary quadrilateral elements. The introduced intrinsic material length parameter is able to predict size effects in material failure. Copyright © 2002 John Wiley & Sons, Ltd.