Premium
Structural‐acoustic coupling on non‐conforming meshes with quadratic shape functions
Author(s) -
Peters Herwig,
Marburg Steffen,
Kessissoglou Nicole
Publication year - 2012
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.4251
Subject(s) - polygon mesh , finite element method , interfacing , quadratic equation , coupling (piping) , piecewise , boundary (topology) , mathematics , boundary value problem , matrix (chemical analysis) , mathematical analysis , geometry , computer science , structural engineering , materials science , engineering , computer hardware , composite material , metallurgy
SUMMARY Fully coupled finite element/boundary element models are a popular choice when modelling structures that are submerged in heavy fluids. To achieve coupling of subdomains with non‐conforming discretizations at their common interface, the coupling conditions are usually formulated in a weak sense. The coupling matrices are evaluated by integrating products of piecewise polynomials on independent meshes. The case of interfacing elements with linear shape functions on unrelated meshes has been well covered in the literature. This paper presents a solution to the problem of evaluating the coupling matrix for interfacing elements with quadratic shape functions on unrelated meshes. The isoparametric finite elements have eight nodes (Serendipity) and the discontinuous boundary elements have nine nodes (Lagrange). Results using linear and quadratic shape functions on conforming and non‐conforming meshes are compared for an example of a fluid‐loaded point‐excited sphere. It is shown that the coupling error decreases when quadratic shape functions are used. Copyright © 2012 John Wiley & Sons, Ltd.