Premium
Mixed‐enhanced formulation for geometrically linear axisymmetric problems
Author(s) -
Kasper E. P.,
Taylor R. L.
Publication year - 2002
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.373
Subject(s) - quadrilateral , rotational symmetry , finite element method , compressibility , quadrature (astronomy) , mathematics , context (archaeology) , mathematical analysis , geometry , structural engineering , engineering , mechanics , physics , biology , paleontology , electrical engineering
A four‐noded quadrilateral axisymmetric formulation in the context of a mixed‐enhanced method is presented. The strain field is represented by two sets of element parameters, which results in enhanced performance and coarse mesh accuracy in bending dominated problems and locking‐free response in the near incompressible limit. The mixed fields presented are such that variational stress recovery is permissible. In addition, the formulation is cast such that the mixed parameters are obtained explicitly yielding finite element arrays with the proper rank using standard order quadrature. In this paper our attention is restricted to the area of geometrically linear problems in solid mechanics. Representative simulations show favourable performance of the formulation. Copyright © 2002 John Wiley & Sons, Ltd.