Premium
Hat interpolation wavelet‐based multi‐scale Galerkin method for thin‐walled box beam analysis
Author(s) -
Kim Yoon Young,
Jang GangWon
Publication year - 2001
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.352
Subject(s) - wavelet , mathematics , interpolation (computer graphics) , galerkin method , mathematical analysis , collocation (remote sensing) , biorthogonal wavelet , multiresolution analysis , algorithm , mathematical optimization , wavelet transform , biorthogonal system , finite element method , computer science , wavelet packet decomposition , artificial intelligence , physics , motion (physics) , machine learning , thermodynamics
The objective of the present work is to propose a new adaptive wavelet‐Galerkin method based on the lowest‐order hat interpolation wavelets. The specific application of the present method is made on the one‐dimensional analysis of thin‐walled box beam problems exhibiting rapidly varying local end effects. Higher‐order interpolation wavelets have been used in the wavelet‐collocation setting, but the lowest‐order hat interpolation is applied here first and a hat interpolation wavelet‐based Galerkin method is newly formulated. Unlike existing orthogonal or biorthogonal wavelet‐based Galerkin methods, the present method does not require special treatment in dealing with general boundary conditions. Furthermore, the present method directly works with nodal values and does not require special formula for the evaluation of system matrices. Though interpolation wavelets do not have any vanishing moment, an adaptive scheme based on multi‐resolution approximations is possible and a preconditioned conjugate gradient method can be used to enhance numerical efficiency. Copyright © 2001 John Wiley & Sons, Ltd.