Premium
On non‐linear behaviour of spherical shallow shells bonded with piezoelectric actuators by the differential quadrature element method (DQEM)
Author(s) -
Wang Xinwei,
Wang Yongliang
Publication year - 2001
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.349
Subject(s) - quadrature (astronomy) , actuator , spherical shell , piezoelectricity , boundary value problem , shell (structure) , finite element method , boundary element method , structural engineering , geometry , materials science , mechanics , mathematical analysis , acoustics , mathematics , physics , engineering , composite material , electronic engineering , electrical engineering
The static behaviour of spherical shallow shells bonded with piezoelectric actuators and subjected to electrical loading are studied in this paper by using the differential quadrature element method (DQEM). Geometrical non‐linear effects are considered. Detailed formulations for the DQ circular spherical shallow shell element and the DQ annular spherical shallow shell element are given for the first time. Numerical studies are performed to evaluate the effects of actuator size, thickness and boundary conditions. Very accurate results are obtained by the DQEM. Based on the results reported in this paper, one may conclude that the DQEM is a useful tool for obtaining solutions for smart materials and structures exhibiting geometric non‐linear behaviours. Thickness effects cannot be neglected when the actuator thickness is comparable to that of the base material. Snap‐through may occur when the applied voltage reaches a critical value even without mechanical loading for certain geometric configurations. Copyright © 2001 John Wiley & Sons, Ltd.