Premium
Finite element buckling analysis of rotationally periodic laminated composite shells
Author(s) -
Xiang Zhihai,
Xue Mingde,
Liu Yinghua,
Cen Zhangzhi
Publication year - 2001
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.322
Subject(s) - buckling , finite element method , composite number , structural engineering , degrees of freedom (physics and chemistry) , materials science , yield (engineering) , mathematics , engineering , composite material , physics , quantum mechanics
A finite element (FE) buckling analysis of rotationally periodic laminated composite shells is performed in this paper. Because the buckling mode of such structures is characterized as rotationally periodic, a corresponding FE buckling analysis scheme is proposed to reduce the computational expenses. Moreover, a new kind of relative degrees‐of‐freedom element is developed, which can be connected to other solid elements with ease and can yield satisfactory results with a relatively coarse FE mesh. Numerical results of two laminated cylindrical shells subjected to lateral pressure are compared with theoretical ones. The good agreement of them shows the validity of this new computational strategy. Finally, a practical structure is analysed to demonstrate the advantage of this method. Copyright © 2001 John Wiley & Sons, Ltd.