z-logo
Premium
Wavelet BEM for large‐scale Stokes flows based on the direct integral formulation
Author(s) -
Xiao Jinyou,
Ye Wenjing
Publication year - 2011
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.3198
Subject(s) - discretization , wavelet , galerkin method , matrix (chemical analysis) , stokes flow , boundary element method , integral equation , mathematics , cantilever , compressed sensing , compression (physics) , mathematical analysis , computer science , finite element method , flow (mathematics) , algorithm , physics , geometry , materials science , engineering , structural engineering , artificial intelligence , composite material , thermodynamics
This paper describes a new wavelet boundary element method (WBEM) for large‐scale simulations of three‐dimensional Stokes problems. It is based on a Galerkin formulation and uses only one set of wavelet basis. A method for the efficient discretization and compression of the double‐layer integral operator of Stokes equation is proposed. In addition, a compression strategy for further reducing the setting‐up time for the sparse system matrix is also developed. With these new developments, the method has demonstrated a high matrix compression rate for problems with complicated geometries. Applications of the method are illustrated through several examples concerning the modeling of damping forces acting on MEMS resonators including a cantilever resonator oscillating in an unbounded air and a perforated plate resonator oscillating next to a fixed substrate. The numerical results clearly illustrate the efficiency and accuracy of the developed WBEM in these large‐scale Stokes flow simulations. Copyright © 2011 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom