Premium
A quasi‐static crack growth simulation based on the singular ES‐FEM
Author(s) -
Nourbakhshnia N.,
Liu G. R.
Publication year - 2011
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.3186
Subject(s) - finite element method , singularity , smoothing , stiffness matrix , smoothed finite element method , displacement (psychology) , structural engineering , boundary (topology) , extended finite element method , mathematics , mathematical analysis , geometry , boundary element method , boundary knot method , engineering , psychology , statistics , psychotherapist
Abstract In the edge‐based smoothed finite element method (ES‐FEM), one needs only the assumed displacement values (not the derivatives) on the boundary of the edge‐based smoothing domains to compute the stiffness matrix of the system. Adopting this important feature, a five‐node crack‐tip element is employed in this paper to produce a proper stress singularity near the crack tip based on a basic mesh of linear triangular elements that can be generated automatically for problems with complicated geometries. The singular ES‐FEM is then formulated and used to simulate the crack propagation in various settings, using a largely coarse mesh with a few layers of fine mesh near the crack tip. The results demonstrate that the singular ES‐FEM is much more accurate than X‐FEM and the existing FEM. Moreover, the excellent agreement between numerical results and the reference observations shows that the singular ES‐FEM offers an efficient and high‐quality solution for crack propagation problems. Copyright © 2011 John Wiley & Sons, Ltd.