Premium
Numerical integration on the sphere and its effect on the material symmetry of constitutive equations—A comparative study
Author(s) -
Ehret A. E.,
Itskov M.,
Schmid H.
Publication year - 2009
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.2688
Subject(s) - constitutive equation , numerical integration , finite element method , mathematics , isotropy , quadrature (astronomy) , numerical analysis , mathematical analysis , physics , engineering , structural engineering , optics , quantum mechanics
In the present paper, we consider a class of constitutive models based on numerical integration on the unit sphere. The directional behaviour of the quadrature schemes and its effect on the symmetry properties of these constitutive models are studied by subjecting the set of integration points on the sphere to arbitrary rigid rotations. We investigate a number of recently proposed integration schemes in application to a full network model of rubber elasticity and to an exponential model for soft tissues. In order to assess and compare these schemes, statistical methods are presented and applied. The analysis discloses a number of integration schemes that offer a good compromise between the numerical error and the number of integration points. However, as a general result it turns out that numerical integration is prone to introduce strong anisotropy into originally isotropic constitutive equations, in particular, for highly non‐linear integrand functions. The consequences for application of the investigated class of constitutive models in finite element calculations are highlighted in a benchmark‐like numerical example. Copyright © 2009 John Wiley & Sons, Ltd.