Premium
Two‐level multiscale enrichment methodology for modeling of heterogeneous plates
Author(s) -
Oskay Caglar
Publication year - 2009
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.2652
Subject(s) - homogenization (climate) , partition of unity , finite element method , displacement field , displacement (psychology) , mathematics , structural engineering , partition (number theory) , brittleness , computer science , mathematical optimization , engineering , materials science , composite material , biodiversity , ecology , psychology , combinatorics , psychotherapist , biology
A new two‐level multiscale enrichment methodology for analysis of heterogeneous plates is presented. The enrichments are applied in the displacement and strain levels: the displacement field of a Reissner–Mindlin plate is enriched using the multiscale enrichment functions based on the partition of unity principle; the strain field is enriched using the mathematical homogenization theory. The proposed methodology is implemented for linear and failure analysis of brittle heterogeneous plates. The eigendeformation‐based model reduction approach is employed to efficiently evaluate the non‐linear processes in case of failure. The capabilities of the proposed methodology are verified against direct three‐dimensional finite element models with full resolution of the microstructure. Copyright © 2009 John Wiley & Sons, Ltd.