Premium
A domain decomposition method for discontinuous Galerkin discretizations of Helmholtz problems with plane waves and Lagrange multipliers
Author(s) -
Farhat Charbel,
Tezaur Radek,
Toivanen Jari
Publication year - 2009
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.2534
Subject(s) - mortar methods , domain decomposition methods , lagrange multiplier , preconditioner , mathematics , discretization , discontinuous galerkin method , finite element method , galerkin method , mathematical analysis , solver , constraint algorithm , feti , helmholtz equation , generalized minimal residual method , iterative method , boundary value problem , mathematical optimization , physics , thermodynamics
A nonoverlapping domain decomposition (DD) method is proposed for the iterative solution of systems of equations arising from the discretization of Helmholtz problems by the discontinuous enrichment method. This discretization method is a discontinuous Galerkin finite element method with plane wave basis functions for approximating locally the solution and dual Lagrange multipliers for weakly enforcing its continuity over the element interfaces. The primal subdomain degrees of freedom are eliminated by local static condensations to obtain an algebraic system of equations formulated in terms of the interface Lagrange multipliers only. As in the FETI‐H and FETI‐DPH DD methods for continuous Galerkin discretizations, this system of Lagrange multipliers is iteratively solved by a Krylov method equipped with both a local preconditioner based on subdomain data, and a global one using a coarse space. Numerical experiments performed for two‐ and three‐dimensional acoustic scattering problems suggest that the proposed DD‐based iterative solver is scalable with respect to both the size of the global problem and the number of subdomains. Copyright © 2009 John Wiley & Sons, Ltd.