z-logo
Premium
A finite element formulation for thermoelastic damping analysis
Author(s) -
Serra Enrico,
Bonaldi Michele
Publication year - 2008
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.2502
Subject(s) - thermoelastic damping , finite element method , dissipation , boundary value problem , biot number , mathematical analysis , mixed finite element method , mechanics , mathematics , classical mechanics , physics , thermal , thermodynamics
Abstract We present a finite element formulation based on a weak form of the boundary value problem for fully coupled thermoelasticity. The thermoelastic damping is calculated from the irreversible flow of entropy due to the thermal fluxes that have originated from the volumetric strain variations. Within our weak formulation we define a dissipation function that can be integrated over an oscillation period to evaluate the thermoelastic damping. We show the physical meaning of this dissipation function in the framework of the well‐known Biot's variational principle of thermoelasticity. The coupled finite element equations are derived by considering harmonic small variations of displacement and temperature with respect to the thermodynamic equilibrium state. In the finite element formulation two elements are considered: the first is a new 8‐node thermoelastic element based on the Reissner–Mindlin plate theory, which can be used for modeling thin or moderately thick structures, while the second is a standard three‐dimensional 20‐node iso‐parametric thermoelastic element, which is suitable to model massive structures. For the 8‐node element the dissipation along the plate thickness has been taken into account by introducing a through‐the‐thickness dependence of the temperature shape function. With this assumption the unknowns and the computational effort are minimized. Comparisons with analytical results for thin beams are shown to illustrate the performances of those coupled‐field elements. Copyright © 2008 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here