Premium
An updated Lagrangian finite element sensitivity analysis of large deformations using quadrilateral elements
Author(s) -
Srikanth Akkaram,
Zabaras Nicholas
Publication year - 2001
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.245
Subject(s) - quadrilateral , finite element method , sensitivity (control systems) , mathematics , polygon mesh , context (archaeology) , deformation (meteorology) , lagrangian , numerical analysis , computer science , structural engineering , mathematical optimization , mathematical analysis , geometry , engineering , physics , geology , paleontology , electronic engineering , meteorology
A continuum parameter and shape sensitivity analysis is presented for metal forming processes using the finite element method. The sensitivity problem is posed in a novel updated Lagrangian framework as suitable for very large deformations when remeshing operations are performed during the analysis. In addition to exploring the issue of transfer of variables between meshes for finite deformation analysis, the complex problem of transfer of design sensitivities (derivatives) between meshes for large deformation inelastic analyses is also discussed. A method is proposed that is shown to give accurate estimates of design sensitivities when remeshing operations are performed during the analysis. Sensitivity analysis for the consistent finite element treatment of near incompressibility within the context of the assumed strain methods is also proposed. In particular, the performance of four‐noded quadrilateral elements for the sensitivity analysis of large deformations is studied. The results of the continuum sensitivity analysis are validated by a comparison with those obtained by a finite difference approximation (i.e. using the solution of a perturbed deformation problem). The effectiveness of the method is demonstrated by applications in the design optimization of metal forming processes. Copyright © 2001 John Wiley & Sons, Ltd.