Premium
A time‐parallel implicit method for accelerating the solution of non‐linear structural dynamics problems
Author(s) -
Cortial Julien,
Farhat Charbel
Publication year - 2008
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.2418
Subject(s) - integrator , parallelism (grammar) , computer science , parallel computing , degrees of freedom (physics and chemistry) , spacetime , computation , reduction (mathematics) , mathematics , space time , time complexity , algorithm , computational science , geometry , computer network , physics , bandwidth (computing) , quantum mechanics , chemical engineering , engineering
The parallel implicit time‐integration algorithm (PITA) is among a very limited number of time‐integrators that have been successfully applied to the time‐parallel solution of linear second‐order hyperbolic problems such as those encountered in structural dynamics. Time‐parallelism can be of paramount importance to fast computations, for example, when space‐parallelism is unfeasible as in problems with a relatively small number of degrees of freedom in general, and reduced‐order model applications in particular, or when reaching the fastest possible CPU time is desired and requires the exploitation of both space‐ and time‐parallelisms. This paper extends the previously developed PITA to the non‐linear case. It also demonstrates its application to the reduction of the time‐to‐solution on a Linux cluster of sample non‐linear structural dynamics problems. Copyright © 2008 John Wiley & Sons, Ltd.