z-logo
Premium
Locally enhanced Voronoi cell finite element model (LE‐VCFEM) for simulating evolving fracture in ductile microstructures containing inclusions
Author(s) -
Hu Chao,
Ghosh Somnath
Publication year - 2008
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.2400
Subject(s) - materials science , voronoi diagram , plasticity , finite element method , softening , void (composites) , coalescence (physics) , cracking , structural engineering , mechanics , composite material , geometry , engineering , mathematics , physics , astrobiology
Abstract Ductile heterogeneous materials such as cast aluminum alloys undergo catastrophic failure that initiates with particle fragmentation, which evolves with void growth and coalescence in localized bands of intense plastic deformation and strain softening. The Voronoi cell finite element model (VCFEM), based on the assumed stress hybrid formulation, is unable to account for plastic strain‐induced softening. To overcome this shortcoming of material softening due to plastic strain localization, this study introduces a locally enhanced VCFEM (LE‐VCFEM) for modeling the very complex phenomenon of ductile failure in heterogeneous metals and alloys. In LE‐VCFEM, finite deformation displacement elements are adaptively added to regions of localization in the otherwise assumed stress‐based hybrid Voronoi cell finite element to locally enhance modeling capabilities for ductile fracture. Adaptive h ‐refinement is used for the displacement elements to improve accuracy. Damage initiation by particle cracking is triggered by a Weibull model. The nonlocal Gurson–Tvergaard–Needleman model of porous plasticity is implemented in LE‐VCFEM to model matrix cracking. An iterative strain update algorithm is used for the displacement elements. The LE‐VCFEM code is validated by comparing with results of conventional FE codes and experiments with real materials. The effect of various microstructural morphological characteristics is also investigated. Copyright © 2008 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here