Premium
A polynomial dimensional decomposition for stochastic computing
Author(s) -
Rahman Sharif
Publication year - 2008
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.2394
Subject(s) - polynomial , polynomial expansion , mathematics , orthonormal basis , dimension (graph theory) , decomposition , random variable , polynomial chaos , probabilistic logic , dimensionality reduction , mathematical optimization , computer science , monte carlo method , mathematical analysis , combinatorics , statistics , ecology , physics , quantum mechanics , artificial intelligence , biology
This article presents a new polynomial dimensional decomposition method for solving stochastic problems commonly encountered in engineering disciplines and applied sciences. The method involves a hierarchical decomposition of a multivariate response function in terms of variables with increasing dimensions, a broad range of orthonormal polynomial bases consistent with the probability measure for Fourier‐polynomial expansion of component functions, and an innovative dimension‐reduction integration for calculating the coefficients of the expansion. The new decomposition method does not require sample points as in the previous version; yet, it generates a convergent sequence of lower‐variate estimates of the probabilistic characteristics of a generic stochastic response. The results of five numerical examples indicate that the proposed decomposition method provides accurate, convergent, and computationally efficient estimates of the tail probability of random mathematical functions or the reliability of mechanical systems. Copyright © 2008 John Wiley & Sons, Ltd.