Premium
Modal validation of sandwich shell finite elements based on a p ‐order shear deformation theory including zigzag terms
Author(s) -
Sulmoni Mattia,
Gmür Thomas,
Cugi Joël,
Matter Marco
Publication year - 2008
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.2301
Subject(s) - zigzag , finite element method , shell (structure) , modal , structural engineering , displacement (psychology) , sandwich structured composite , finite strip method , materials science , geometry , composite number , mathematics , engineering , composite material , psychology , psychotherapist
This paper describes a set of improved C 0 ‐compatible composite shell finite elements for evaluating the global dynamic response (natural frequencies and mode shapes) of sandwich structures. Combining a through‐the‐thickness displacement approximation of variable high order with a first‐order zigzag function, the proposed finite elements are suited for modelling sandwich plates and doubly curved shells with a non‐uniform thickness and are more accurate than conventional models based on the first‐ and third‐order shear deformation theories, especially in sandwich panels with highly heterogeneous properties. The new finite element model is then validated by a comparison with the standard shell and 3D solid models. From these investigations, it can be concluded that adding a zigzag function even to high‐order polynomial approximations of the through‐the‐thickness displacement is a useful tool for refining the modelling of sandwich structures. In addition, the proposed formulation is sufficiently versatile to represent with the same level of accuracy the behaviour of thin‐to‐thick laminated shells as well as of strongly heterogeneous sandwich structures. Copyright © 2008 John Wiley & Sons, Ltd.