Premium
Efficient computation of order and mode of corner singularities in 3D‐elasticity
Author(s) -
Dimitrov A.,
Andrä H.,
Schnack E.
Publication year - 2001
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.230
Subject(s) - mathematics , eigenvalues and eigenvectors , gravitational singularity , singularity , finite element method , mathematical analysis , computation , linear elasticity , exponent , factorization , quadratic equation , numerical analysis , galerkin method , geometry , algorithm , linguistics , philosophy , physics , quantum mechanics , thermodynamics
A general numerical procedure is presented for the efficient computation of corner singularities, which appear in the case of non‐smooth domains in three‐dimensional linear elasticity. For obtaining the order and mode of singularity, a neighbourhood of the singular point is considered with only local boundary conditions. The weak formulation of the problem is approximated by a Galerkin–Petrov finite element method. A quadratic eigenvalue problem ( P +λ Q +λ 2 R ) u = 0 is obtained, with explicitly analytically defined matrices P , Q , R . Moreover, the three matrices are found to have optimal structure, so that P , R are symmetric and Q is skew symmetric, which can serve as an advantage in the following solution process. On this foundation a powerful iterative solution technique based on the Arnoldi method is submitted. For not too large systems this technique needs only one direct factorization of the banded matrix P for finding all eigenvalues in the interval ℛ e (λ)∈(−0.5,1.0) (no eigenpairs can be ‘lost’) as well as the corresponding eigenvectors, which is a great improvement in comparison with the normally used determinant method. For large systems a variant of the algorithm with an incomplete factorization of P is implemented to avoid the appearance of too much fill‐in. To illustrate the effectiveness of the present method several new numerical results are presented. In general, they show the dependence of the singular exponent on different geometrical parameters and the material properties. Copyright © 2001 John Wiley & Sons, Ltd.