z-logo
Premium
Strategy for selecting representative points via tangent spheres in the probability density evolution method
Author(s) -
Chen JianBing,
Li Jie
Publication year - 2007
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.2246
Subject(s) - mathematics , tangent , probability density function , spheres , transformation (genetics) , affine transformation , projection (relational algebra) , tangent space , mathematical analysis , tangent cone , mathematical optimization , geometry , algorithm , statistics , physics , biochemistry , chemistry , astronomy , gene
Abstract A strategy of selecting efficient integration points via tangent spheres in the probability density evolution method (PDEM) for response analysis of non‐linear stochastic structures is studied. The PDEM is capable of capturing instantaneous probability density function of the stochastic dynamic responses. The strategy of selecting representative points is of importance to the accuracy and efficiency of the PDEM. In the present paper, the centers of equivalent non‐overlapping tangent spheres are used as the basis to construct a representative point set. An affine transformation is then conducted and a hypersphere sieving is imposed for spherically symmetric distributions. Construction procedures of centers of the tangent spheres are elaborated. The features of the point sets via tangent spheres, including the discrepancy and projection ratio, are observed and compared with some other typical point sets. The investigations show that the discrepancies of the point sets via tangent spheres are in the same order of magnitude as the point sets by the number theoretical method. In addition, it is observed that rotation transformation could greatly improve the projection ratios. Numerical examples show that the proposed method is accurate and efficient for situations involving up to four random variables. Copyright © 2007 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here