Premium
The extended finite element method in thermoelastic fracture mechanics
Author(s) -
Duflot Marc
Publication year - 2007
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.2197
Subject(s) - extended finite element method , thermoelastic damping , finite element method , traction (geology) , stress intensity factor , fracture mechanics , crack tip opening displacement , mechanics , crack closure , materials science , curvilinear coordinates , structural engineering , heat flux , displacement field , displacement (psychology) , mathematics , geometry , thermal , engineering , heat transfer , physics , thermodynamics , mechanical engineering , psychology , psychotherapist
The extended finite element method (XFEM) is applied to the simulation of thermally stressed, cracked solids. Both thermal and mechanical fields are enriched in the XFEM way in order to represent discontinuous temperature, heat flux, displacement, and traction across the crack surface, as well as singular heat flux and stress at the crack front. Consequently, the cracked thermomechanical problem may be solved on a mesh that is independent of the crack. Either adiabatic or isothermal condition is considered on the crack surface. In the second case, the temperature field is enriched such that it is continuous across the crack but with a discontinuous derivative and the temperature is enforced to the prescribed value by a penalty method. The stress intensity factors are extracted from the XFEM solution by an interaction integral in domain form with no crack face integration. The method is illustrated on several numerical examples (including a curvilinear crack, a propagating crack, and a three‐dimensional crack) and is compared with existing solutions. Copyright © 2007 John Wiley & Sons, Ltd.