z-logo
Premium
Extrinsic cohesive modelling of dynamic fracture and microbranching instability in brittle materials
Author(s) -
Zhang Zhengyu Jenny,
Paulino Glaucio H.,
Celes Waldemar
Publication year - 2007
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.2030
Subject(s) - cohesive zone model , discontinuity (linguistics) , fracture mechanics , brittleness , instability , materials science , finite element method , fracture (geology) , mechanics , structural engineering , hardening (computing) , computer science , engineering , composite material , mathematics , physics , mathematical analysis , layer (electronics)
Abstract Dynamic crack microbranching processes in brittle materials are investigated by means of a computational fracture mechanics approach using the finite element method with special interface elements and a topological data structure representation. Experiments indicate presence of a limiting crack speed for dynamic crack in brittle materials as well as increasing fracture resistance with crack speed. These phenomena are numerically investigated by means of a cohesive zone model (CZM) to characterize the fracture process. A criticalevaluation of intrinsic versus extrinsic CZMs is briefly presented, which highlights the necessity of adopting an extrinsic approach in the current analysis. A novel topology‐based data structure is employed to enable fast and robust manipulation of evolving mesh information when extrinsic cohesive elements are inserted adaptively. Compared to intrinsic CZMs, which include an initial hardening segment in the traction–separation curve, extrinsic CZMs involve additional issues both in implementing the procedure and in interpreting simulation results. These include time discontinuity in stress history, fracture pattern dependence on time step control, and numerical energy balance. These issues are investigated in detail through a ‘quasi‐steady‐state’ crack propagation problem in polymethylmethacrylate. The simulation results compare reasonably well with experimental observations both globally and locally, and demonstrate certain advantageous features of the extrinsic CZM with respect to the intrinsic CZM. Copyright © 2007 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here