Premium
Analysis of SMA composite laminates using a multiscale modelling technique
Author(s) -
Marfia Sonia,
Sacco Elio
Publication year - 2006
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.1916
Subject(s) - composite laminates , shape memory alloy , sma* , materials science , finite element method , homogenization (climate) , composite number , constitutive equation , structural engineering , composite material , buckling , nonlinear system , computer science , engineering , algorithm , biodiversity , ecology , physics , quantum mechanics , biology
The present work deals with the analysis of smart laminates, obtained as stacking sequence of fibre‐reinforced composite laminae and composite shape memory alloy (SMA) layers. The behaviour of composite SMA (CSMA) laminate is studied developing a full micro–macro approach. In fact, a non‐linear 4‐node mixed interpolation of tensorial components (MITC4) laminate finite element, based on the first‐order shear deformation theory, is developed. The SMA layer constitutive relationship is determined solving a non‐linear homogenization problem at each non‐linear iteration of each time step for each integration Gauss point. Some numerical applications are developed in order to investigate the influence of the CSMA on the buckling behaviour of plates and on the transversal displacement control of plates subjected to different loading conditions. Copyright © 2006 John Wiley & Sons, Ltd.