z-logo
Premium
Generalized coupled thermoelasticity of functionally graded cylindrical shells
Author(s) -
Bahtui A.,
Eslami M. R.
Publication year - 2006
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.1782
Subject(s) - laplace transform , shell (structure) , rotary inertia , galerkin method , mathematics , mathematical analysis , finite element method , inverse laplace transform , shell theory , rotational symmetry , geometry , mechanics , materials science , inertia , physics , classical mechanics , composite material , thermodynamics
In this paper, the response of a circular cylindrical thin shell made of the functionally graded material based on the generalized theory of thermoelasticity is obtained. The governing equations of the generalized theory of thermoelasticity and the energy equations are simultaneously solved for a functionally graded axisymmetric cylindrical shell subjected to thermal shock load. Thermoelasticity with second sound effect in cylindrical shells based on the Lord–Shulman model is compared with the Green–Lindsay model. A second‐order shear deformation shell theory, that accounts for the transverse shear strains and rotations, is considered. Including the thermo‐mechanical coupling and rotary inertia, a Galerkin finite element formulation in space domain and the Laplace transform in time domain is used to formulate the problem. The inverse Laplace transform is obtained using a numerical algorithm. The shell is graded through the thickness assuming a volume fraction of metal and ceramic, using a power law distribution. The effects of temperature field for linear and non‐linear distributions across the shell thickness are examined. The results are validated with the known data in the literature. Copyright © 2006 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here