Premium
Optimization of truss topology using tabu search
Author(s) -
Bennage W. A.,
Dhingra A. K.
Publication year - 1995
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.1620382308
Subject(s) - tabu search , truss , mathematical optimization , topology optimization , topology (electrical circuits) , mathematics , continuous optimization , optimization problem , finite element method , engineering , multi swarm optimization , structural engineering , combinatorics
A design procedure for integrating topological considerations in the framework of structural optimization is presented. The proposed approach is capable of considering multiple load conditions, stress, displacement and local/global buckling constraints, and multiple objective functions in the problem formulation. Further, since the proposed method permits members to be added to or deleted from an existing topology and the topology is not defined by member areas, the difficulty of not being able to reach singular optima is also avoided. These objectives are accomplished using a discrete optimization procedure which uses 0–1 topological variables to optimize alternate designs. Since the topological variables are discrete in nature and the member cross‐sections are assumed to be continuous, the topological optimization problem has mixed discrete‐continuous variables. This non‐linear programming problem is solved using a memory‐based combinatorial optimization technique known as tabu search. Numerical results obtained using tabu search for single and multiobjective topological optimization of truss structures are presented. To model the multiple objective functions in the problem formulation, a cooperative game theoretic approach is used. The results indicate that the optimum topologies obtained using tabu search compare favourably, and in some instances, outperform the results obtained using the ground–structure approach. However, this improvement occurs at the expense of a significant increase in computational burden owing to the fact that the proposed approach necessitates that the geometry of each trial topology be optimized.