Premium
Real contact mechanisms and finite element formulation—a coupled thermomechanical approach
Author(s) -
Zavarise G.,
Wriggers P.,
Stein E.,
Schrefler B. A.
Publication year - 1992
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.1620350409
Subject(s) - finite element method , linearization , thermal contact , thermal , contact force , constant (computer programming) , mechanics , mathematics , mechanical engineering , classical mechanics , engineering , nonlinear system , computer science , heat transfer , structural engineering , physics , thermodynamics , quantum mechanics , programming language
The solution of contact problems involves great numerical efforts to satisfy non‐penetration conditions. The search for numerical efficiency hence has limited the modelling of the real physical interface behaviour. Up to now mainly simple laws, usually formulated using constant coefficients, have been available to study contact problems in uncoupled from. Here a thermomechanically coupled contact element is presented which accounts for the real microscopic shape of the surfaces, the microscopic mechanism of force transmission and heat exchange. The contact element geometrical behaviour has been put together with experimental and theoretical well founded micro‐mechanical and micro‐thermal laws adapted to Finite Element Method (FEM) necessities. Based on these laws the macroscopic related stiffnesses are calculated and continuously updated taking into account changes in significant parameters. The linearization of the set of equations has been obtained using a consistent technique which implies computational efficiency.