Premium
A new method for finite element transitional mesh generation
Author(s) -
Chinnaswamy C.,
Amadei B.,
Illangasekare T. H.
Publication year - 1991
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.1620310703
Subject(s) - polygon mesh , finite element method , inverse , computation , construct (python library) , algorithm , mathematical optimization , mesh generation , mathematics , computer science , element (criminal law) , simple (philosophy) , geometry , engineering , structural engineering , philosophy , epistemology , law , political science , programming language
In the preparation of finite element meshes, inclusion of transitional blocks is important in order to construct optimal meshes. In this paper, a new method is proposed which is capable of generating quaddominated arbitrary transitional meshes. These meshes are well graded and do not require any mesh smoothening algorithm. The inverse isoparametric mapping combined with an elimination procedure is used to construct transition zones. This new algorithm is described in detail and its efficiency is illustrated with appropriate examples. Different methods available for inverse isoparametric mapping are discussed with their merits and limitations. Many of the existing techniques for inverse isoparametric mapping require the calculation of some special coefficients which may vary with the element type. These techniques lose their clarity and efficiency in the case of three dimensional and higher order two dimensional elements. In this paper, a generalized iterative procedure is proposed to carry out the inverse isoparametric mapping. The computations in this approach are already part of every finite element program based on the isoparametric formulation. Hence implementation of the new algorithm is very simple and straightforward.