Premium
A fully implicit splitting method for accurate tidal computations
Author(s) -
Wilders P.,
van Stijn Th. L.,
Stelling G. S.,
Fokkema G. A.
Publication year - 1988
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.1620261209
Subject(s) - computation , conjugate gradient method , algorithm , computer science , linear system , mathematics , numerical analysis , system of linear equations , mathematical optimization , geometry , mathematical analysis
Often industrial codes for the numerical integration of the 2D shallow water equations are based on an Alternating Direction Implicit method. However, for large time steps these codes suffer from inaccuracies when dealing with a complex geometry or bathymetry. This reduces the performance considerably. In this paper a new method is presented in which these inaccuracies are absent, even for large time steps. The method is a fully implicit time integration method. In order to obtain linear systems that can be solved efficiently, we introduce a time splitting method. The resulting linear systems are solved iteratively by using the preconditioned Conjugate Gradients Squared method.