Premium
Prediction of incidence effects on oscillating airfoil aerodynamics by a locally analytical method
Author(s) -
Chiang HsiaoWei D.,
Fleeter Sanford
Publication year - 1988
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.1620261007
Subject(s) - airfoil , aerodynamics , flow (mathematics) , mechanics , mathematics , incompressible flow , strouhal number , boundary value problem , navier–stokes equations , potential flow , reduced frequency , compressibility , physics , mathematical analysis , reynolds number , turbulence
Abstract A complete mathematical model is formulated to analyse the effects of mean flow incidence angle on the unsteady aerodynamics of an oscillating airfoil in an incompressible flow field. A velocity potential formulation is utilized. The steady flow is independent of the unsteady flow field. However, the unsteady flow is coupled to the steady flow field through the boundary conditions on the oscillating airfoil. The numerical solution technique for both the steady and unsteady flow fields is based on a locally analytical method. In this method, analytical solutions are incorporated into the numerical technique, with the discrete algebraic equations which represent the differential flow field equations obtained from analytic solutions in individual local computational grid elements. This flow model and locally analytic numerical solution method are then verified through the excellent correlation obtained with the Theodorsen oscillating flat plate and Sears transverse gust classical solutions. The effects of mean flow incidence on the steady and oscillating airfoil aerodynamics are then investigated.