Premium
Boundary integral equation method for shape optimization of elastic structures
Author(s) -
Choi Joo Ho,
Kwak Byung Man
Publication year - 1988
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.1620260709
Subject(s) - mathematics , mathematical analysis , fillet (mechanics) , singular boundary method , shape optimization , boundary (topology) , boundary value problem , elasticity (physics) , boundary knot method , boundary element method , finite element method , structural engineering , materials science , engineering , composite material
Abstract A general method for shape design sensitivity analysis as applied to plane elasticity problems is developed with a direct boundary integral equation formulation, using the material derivative concept and adjoint variable method. The problem formulation is very general and a complete consideration is given to describing the boundary variation by including the tangential component of the velocity field. The method is then applied to obtain the sensitivity formula for a general stress constraint imposed over a small part of the boundary. The accuracy of the design sensitivity analysis is studied with a fillet and an elastic ring design problem. Among the several numerical implementations tested, the second order boundary elements with a cubic spline representation of the moving boundary have shown the best accuracy. A smooth characteristic function is found to be better than a plateau function for localization of the stress constraint. Optimal shapes for the two problems are presented to show numerical applications.