Premium
A simple cubic displacement element for plate bending
Author(s) -
Allman D. J.
Publication year - 1976
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.1620100204
Subject(s) - finite element method , mixed finite element method , cubic function , extended finite element method , mathematics , finite element limit analysis , displacement field , mathematical analysis , boundary knot method , geometry , displacement (psychology) , bending of plates , bending , structural engineering , boundary element method , engineering , psychology , psychotherapist
Early attempts to construct a triangular finite element for plate bending problems from a compatible cubic displacement field are not entirely satisfactory. The present paper shows how an accurate plate element can be achieved using independent cubic polynomial assumptions for the internal and boundary displacements in conjunction with a modified potential energy principle. This approach yields a simple algebraic formulation with favourable connection quantities at the element vertices which will appeal to practical users of the conventional finite element displacement method. Moreover, in Appendix I it is shown that the cubic element is identical to a previous hybrid stress element with linear internal bending and twisting moments and cubic boundary displacements. The stresses obtained from the former hybrid finite element solution therefore satisfy the strain compatibility conditions exactly. This remarkable result has an important significance in the theory of hybrid finite elements.