Premium
Generalized nodes and high‐performance elements
Author(s) -
Tian Rong,
Yagawa Genki
Publication year - 2005
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.1436
Subject(s) - partition of unity , tetrahedron , finite element method , quadratic equation , mesh generation , eigenvalues and eigenvectors , partition (number theory) , mathematics , node (physics) , mathematical optimization , geometry , combinatorics , engineering , structural engineering , physics , quantum mechanics
The paper concerns the development of robust and high accuracy finite elements with only corner nodes using a partition‐of‐unity‐based finite‐element approximation. Construction of the partition‐of‐unity‐based approximation is accomplished by a physically defined local function of displacements. A 4‐node quadratic tetrahedral element and a 3‐node quadratic triangular element are developed. Eigenvalue analysis shows that linear dependencies in the partition‐of‐unity‐based finite‐element approximation constructed for the new elements are eliminable. Numerical calculations demonstrate that the new elements are robust, insensitive to mesh distortion, and offer quadratic accuracy, while also keeping mesh generation extremely simple. Copyright © 2005 John Wiley & Sons, Ltd.