z-logo
Premium
Stable algorithm for the stress field around a multiply branched crack
Author(s) -
Englund Jonas
Publication year - 2005
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.1311
Subject(s) - mathematics , computation , fredholm integral equation , regularization (linguistics) , stress intensity factor , stress field , integral equation , mathematical analysis , algorithm , fracture mechanics , computer science , finite element method , structural engineering , engineering , artificial intelligence
We present an algorithm for the computation of the stress field around a branched crack. The algorithm is based on an integral equation with good numerical properties. Our equation is obtained through a left regularization of an integral equation of Fredholm's first kind. Complex valued functions involving repeated products of square roots appear in the regularization. A new and effective scheme for correct evaluation of these functions is described. For validation, mode I and II stress intensity factors are computed for simple branched geometries. The relative errors in the stress intensity factors are typically as low as 10 −12 . A large scale example is also presented, where a crack with 176 branching points is studied. Copyright © 2005 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom