Premium
A framework for fracture modelling based on the material forces concept with XFEM kinematics
Author(s) -
Larsson Ragnar,
Fagerström Martin
Publication year - 2005
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.1246
Subject(s) - discontinuity (linguistics) , extended finite element method , kinematics , fracture (geology) , linear elasticity , fracture mechanics , finite element method , displacement (psychology) , inverse , cohesive zone model , mechanics , mathematics , mathematical analysis , geometry , classical mechanics , structural engineering , geology , physics , engineering , geotechnical engineering , psychology , psychotherapist
A theoretical and computational framework which covers both linear and non‐linear fracture behaviour is presented. As a basis for the formulation, we use the material forces concept due to the close relation between on one hand the Eshelby energy–momentum tensor and on the other hand material defects like cracks and material inhomogeneities. By separating the discontinuous displacement from the continuous counterpart in line with the eXtended finite element method (XFEM), we are able to formulate the weak equilibrium in two coupled problems representing the total deformation. However, in contrast to standard XFEM, where the direct motion discontinuity is used to model the crack, we rather formulate an inverse motion discontinuity to model crack development. The resulting formulation thus couples the continuous direct motion to the inverse discontinuous motion, which may be used to simulate linear as well as non‐linear fracture in one and the same formulation. In fact, the linear fracture formulation can be retrieved from the non‐linear cohesive zone formulation simply by confining the cohesive zone to the crack tip. These features are clarified in the two numerical examples which conclude the paper. Copyright © 2005 John Wiley & Sons, Ltd.