Premium
Improved genetic algorithm for design optimization of truss structures with sizing, shape and topology variables
Author(s) -
Tang Wenyan,
Tong Liyong,
Gu Yuanxian
Publication year - 2005
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.1244
Subject(s) - mathematical optimization , truss , population , sizing , coding (social sciences) , topology optimization , genetic algorithm , fitness function , computer science , constraint (computer aided design) , algorithm , topology (electrical circuits) , mathematics , engineering , art , structural engineering , combinatorics , finite element method , visual arts , statistics , demography , geometry , sociology
This paper presents an improved genetic algorithm (GA) to minimize weight of truss with sizing, shape and topology variables. Because of the nature of discrete and continuous variables, mixed coding schemes are proposed, including binary and float coding, integer and float coding. Surrogate function is applied to unify the constraints into single one; moreover surrogate reproduction is developed to select good individuals to mating pool on the basis of constraint and fitness values, which completely considers the character of constrained optimization. This paper proposes a new strategy of creating next population by competing between parent and offspring population based on constraint and fitness values; so that lifetime of excellent gene is prolonged. Because the initial population is created randomly and three operators of GA are also indeterminable, it is necessary to check whether the structural topology is desirable. An improved restart operator is proposed to introduce new gene and explore new space, so that the reliability of GA is enhanced. Selected examples are solved; the improved numerical results demonstrate that the enhanced GA scheme is feasible and effective. Copyright © 2005 John Wiley & Sons, Ltd.