Premium
Boundary knot method for some inverse problems associated with the Helmholtz equation
Author(s) -
Jin Bangti,
Zheng Yao
Publication year - 2005
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.1240
Subject(s) - mathematics , helmholtz equation , piecewise , mathematical analysis , method of fundamental solutions , boundary value problem , inverse problem , cauchy distribution , partial differential equation , singular value decomposition , regularization (linguistics) , singular boundary method , algorithm , boundary element method , computer science , finite element method , physics , thermodynamics , artificial intelligence
The boundary knot method is an inherently meshless, integration‐free, boundary‐type, radial basis function collocation technique for the solution of partial differential equations. In this paper, the method is applied to the solution of some inverse problems for the Helmholtz equation, including the highly ill‐posed Cauchy problem. Since the resulting matrix equation is badly ill‐conditioned, a regularized solution is obtained by employing truncated singular value decomposition, while the regularization parameter for the regularization method is provided by the L‐curve method. Numerical results are presented for both smooth and piecewise smooth geometry. The stability of the method with respect to the noise in the data is investigated by using simulated noisy data. The results show that the method is highly accurate, computationally efficient and stable, and can be a competitive alternative to existing methods for the numerical solution of the problems. Copyright © 2005 John Wiley & Sons, Ltd.