z-logo
Premium
Smart element method I. The Zienkiewicz–Zhu feedback
Author(s) -
Li Shaofan,
Liu Xiaohu,
Gupta Anurag
Publication year - 2004
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.1217
Subject(s) - eigenstrain , homogenization (climate) , finite element method , discretization , estimator , mathematics , discretization error , mixed finite element method , computer science , computation , mathematical optimization , mathematical analysis , algorithm , engineering , materials science , structural engineering , biodiversity , ecology , statistics , residual stress , composite material , biology
Abstract A new error control finite element formulation is developed and implemented based on the variational multiscale method, the inclusion theory in homogenization, and the Zienkiewicz–Zhu error estimator. By synthesizing variational multiscale method in computational mechanics, the equivalent eigenstrain principle in micromechanics, and the Zienkiewicz–Zhu error estimator in the finite element method (FEM), the new finite element formulation can automatically detect and subsequently homogenize its own discretization errors in a self‐adaptive and a self‐adjusting manner. It is the first finite element formulation that combines an optimal feedback mechanism and a precisely defined homogenization procedure to reduce its own discretization errors and hence to control numerical pollutions. The paper focuses on the following two issues: (1) how to combine a multiscale method with the existing finite element error estimate criterion through a feedback mechanism, and (2) convergence study. It has been shown that by combining the proposed variational multiscale homogenization method with the Zienkiewicz–Zhu error estimator a clear improvement can be made on the coarse scale computation. It is also shown that when the finite element mesh is refined, the solution obtained by the variational eigenstrain multiscale method will converge to the exact solution. Copyright © 2004 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here